Reconstruction Techniques in ANNIE

FRANKLIN LEMMONS

NEW PERSPECTIVES IN PARTICLE PHYSICS

06/14/2022

The ANNIE Detector

26-ton Gd-doped water Cherenkov neutrino detector

- Photodetectors within the tank
- Scintillators up and down beam direction
 - Small FMV to filter background
 - MRD penetration for energy and momentum reconstruction

Goals

Charged Current Quasi-Elastic Interactions

- Assume only two outgoing particles, but More complicated reactions are possible
- Can seem identical, but for neutron emmissions

Neutrino Cross-section measurements

- GeV-scale Interactions are not well defined
- Detector on known beam can provide further examples and statistics

Staging new technologies

- LAPPDs
 - One deployed
 - Five planned

Event Reconstruction

Event Reconstruction

After a neutrino charged-current interaction in the tank, a muon traverses the tank, emitting Cherenkov radiation.

- Emissions picked up by PMTs.
- Using charge and time residual information, the path and origin of the muon can be reconstructed.

Muon continues into MRD

- Saps momentum and stops particle
- Based on penetration depth, energy and momentum of muon can be determined.

Simulated Reconstruction

Vertex

Energy

Momentum Transfer

Cherenkov ring detected by photodetectors

 From distribution and timing, we can draw conclusions about the position of the event

Results improved by LAPPDs

- Information from the reconstructed vertex and the MRD track used reconstruct energy profile for the interaction
 - 1σ-resolution of 10% muon energy and 14% neutrino energy achieved
- Machine learning techniques used

 CCQE events can be completely described by energy of initial neutrino, and the resulting energy and momentum in released muon.

$$Q_{QE}^2 = 2E_{\nu}^{QE}(E_{\mu} - p_{\mu}\cos\theta_{\mu}) - m_{\mu}^2$$

 LAPPDs improve Q² resolution significantly

Neutron Multiplicity

 Muon neutrino from Booster Neutrino Beam interacts with nucleus in target volume; muon stops in MRD

Neutrons produced (if any)
 undergo thermalization in
 target volume

3. Neutrons capture on gadolinium; gadolinium's de-excitation signal (Cherenkov light from ~8 MeV gamma cascade's Compton scatter electrons) is detected

Neutron Backgrounds

Neutrons unrelated to tank neutrino interactions

- "Dirt neutrons": interactions up-beam of detector
- "Skyshine neutrons": entered tank from atmosphere

nonCC events selected below energy threshold

Cluster Time in Delayed Window: Background Events

Credit: Emily Pottebaum

Neutrons from Beam Data

Using Data taken in February-April 2021

Neutrons are visible

Counting not efficient

Expected to improve with implementation of other analyses

Credit: Michael Nieslony

Technological Goal: LAPPD

- ANNIE is also a staging ground for Large Area Picosecond Photo-Detectors (LAPPDs)
 - Multi-channel, 8x8in square
 - Fast signal (~50ps resolution)
 - 5 planned for physics measurement
- LAPPDs have been tested in the lab
- First LAPPD has been deployed in the water
 - As of March 29
 - 4 more coming soon

LAPPD Results

With an LAPPD in the tank, response to events are being seen

First neutrinos have been detected

Analysis of these event responses is underway

Conclusions

ANNIE analysis is ongoing in several directions

- Reconstruction of neutrino events in position, muon energy and momentum transfer
- Neutrons, background and emitted by CC Events
- Implementation of new photodetector LAPPD

Physics results expected soon

Thank You

And are there any questions?